For Better Performance Please Use Chrome or Firefox Web Browser

In press. Novel nanostructure amino acid-based poly(amide-imide)s enclosing benzimidazole pendant group in green medium: fabrication and characterization.


In the present work, several novel optically active nanostructure poly(amide–imide)s (PAI)s were synthesized via step-growth polymerization reaction of chiral diacids based on pyromellitic dianhydride-derived dicarboxylic acids containing different natural amino acids such as l-alanine, S-valine, l-leucine, l-isoleucine, l-methionine, and l-phenylalanine with 2-(3,5-diaminophenyl)-benzimidazole under green conditions using molten tetrabutylammonium bromide. The new optically active PAIs were achieved in good yields and moderate inherent viscosity up to 0.41 dL/g. The synthesized polymers were characterized with FT-IR, 1H-NMR, X-ray diffraction, field emission scanning electron microscopy (FE-SEM), elemental and thermogravimetric analysis (TGA) techniques. These polymers show high solubility in organic polar solvents due to the presence of amino acid and benzimidazole pendant group at room temperature. FE-SEM results show that, these chiral nanostructured PAIs have spherical shapes and the particle size is around 20–80 nm. On the basis of TGA data, such PAIs are thermally stable and can be classified as self-extinguishing polymers. In addition due to the existence of amino acids in the polymer backbones, these macromolecules are not only optically active but also could be biodegradable and thus may well be classified under environmentally friendly materials.


تحت نظارت وف بومی