New developments in polymer science and technology using combination of ionic liquids and microwave irradiation
Abstract
The purpose of this review is to provide appropriate details concerning the application of ionic liquids (IL)s associated with microwave-assisted polymer chemistry. From the viewpoint of microwave chemistry, one of the key significant advantages of ILs is their high polarity, which is variable, depending on the cation and anion and therefore can effectively be tuned to a particular application. Hence, these liquids offer a great potential for the innovative application of microwaves for organic synthesis as well as for polymer science. ILs efficiently absorb microwave energy through an ionic conduction mechanism, and thus are employed as solvents and co-solvents, leading to a very high heating rate and a significantly shortened reaction time. Since an IL-based and microwave-accelerated procedure is efficient and environmentally benign, we believe that this method may have some potential applications in the synthesis of a wide variety of vinyl and non-vinyl polymers. This review describes application of combination of ILs with microwave irradiation as a modern tool for the addition and step-growth polymerization as well as modification of polymers and it was compared with ILs alone and conventional polymerization method.